Closed-loop Behavior of Nonlinear Model Predictive Control
نویسندگان
چکیده
Model predictive control (MPC) relies on real-time optimization to determine open-loop control profiles and state estimates given process measurements. When the underlying process model is nonlinear, the MPC system exhibits unique behavior not seen in linear MPC. In this article, we highlight some of the characteristics of nonlinear models in the context of closedloop performance. We examine the effects of disturbance models on closed-loop performance and show necessary conditions for how and where steady states of the closed-loop system may be found. We demonstrate these conditions on a simple example to show that the input disturbance model can lead to failure of the control system, and that linear MPC is inadequate for controlling this class of systems. Additionally, due to nonconvexity, the optimization problems solved in nonlinear MPC may have local optima. These local minima may lead to undesirable performance, particularly in the state estimator. We study the existence of these optima in the regulator and estimator and examine their potential effects on the performance of the closed-loop system. To avoid unwanted local minima, we advocate the use of constraints in the estimator and regulator formulations and show how a shorter prediction horizon in the regulator leads to better control profiles for some nonlinear models.
منابع مشابه
Constrained Model Predictive Control of Low-power Industrial Gas Turbine
Nowadays, extensive research has been conducted for gas turbine engines control due to growing importance of gas turbine engines for different industries and the need to design a suitable control system for a gas turbine as the heart of the industry. In order to design gas turbine control system, various control variables can be used, but in the meantime, fuel flow inserting into combustion cha...
متن کاملAdaptive fuzzy pole placement for stabilization of non-linear systems
A new approach for pole placement of nonlinear systems using state feedback and fuzzy system is proposed. We use a new online fuzzy training method to identify and to obtain a fuzzy model for the unknown nonlinear system using only the system input and output. Then, we linearized this identified model at each sampling time to have an approximate linear time varying system. In order to stabilize...
متن کاملA Linear Matrix Inequality (LMI) Approach to Robust Model Predictive Control (RMPC) Design in Nonlinear Uncertain Systems Subjected to Control Input Constraint
In this paper, a robust model predictive control (MPC) algorithm is addressed for nonlinear uncertain systems in presence of the control input constraint. For achieving this goal, firstly, the additive and polytopic uncertainties are formulated in the nonlinear uncertain systems. Then, the control policy can be demonstrated as a state feedback control law in order to minimize a given cost funct...
متن کاملطراحی کنترل کننده پیش بین سیستم بویلر- توربین
A nonlinear model predictive control (NMPC) algorithm based on neural network is designed for boiler- turbine system. The boiler–turbine system presents a challenging control problem owing to its severe nonlinearity over a wide operation range, tight operating constraints on control move and strong coupling among variables. The nonlinear system is identified by MLP neural network and neur...
متن کاملDefinition of General Operator Space and The s-gap Metric for Measuring Robust Stability of Control Systems with Nonlinear Dynamics
In the recent decades, metrics have been introduced as mathematical tools to determine the robust stability of the closed loop control systems. However, the metrics drawback is their limited applications in the closed loop control systems with nonlinear dynamics. As a solution in the literature, applying the metric theories to the linearized models is suggested. In this paper, we show that usin...
متن کامل